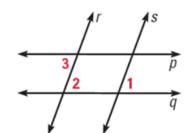

6) Given: m∠ECD = 140°, m∠ABF = 40°

Prove: $\overrightarrow{BF} \mid \mid \overrightarrow{CE} \mid$

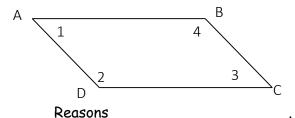


Statements

- 1) m∠ECD = 140°, m∠ABF = 40°
- 2) < ABF and < FBC are a linear pair
- 3) < ABF and < FBC are supplementary
- 4) m<ABF + m<FBC = 180
- 5) 40 + m < FBC = 180
- 6) m < FBC = 140
- 7) m<FBC = m<ECD
- 8) $\langle FBC \cong \langle ECD \rangle$
- 9) *BF* || *CE*

- 1) Given
- 2) Def. of a Linear Pair
- 3) Linear Pair Postulate
- 4) Def. of Supp. Angles
- 5) Substitution Prop. Of =
- 6) Subtraction Prop. Of =
- 7) Substitution Prop. Of =
- 8) Def. of Congruent Angles
- 9) Corresponding Angles Post. Converse

7) Given: $r \mid\mid s, \angle 1 \cong \angle 3$ Prove: $p \mid\mid q$



Statements

- 1) r || s, $\angle 1 \cong \angle 3$
- 2) ∠1 ≅ ∠2
- 3) ∠2 ≅ ∠3
- 4) p || q

- Reasons
- 1) Given
- 2) Corresponding Angles Postulate
- 3) Transitive Prop. Of Congruence
- 4) Alt. Interior Angles thm. Converse
- 8) Given: $\overline{AB} \mid \mid \overline{CD}, \angle 1 \cong \angle 3, \angle 2 \cong \angle 4$

Prove: $\overline{AD} \mid \mid \overline{BC}$

Statements

- 1) $\overline{AB} \mid \mid \overline{CD}, \angle 1 \cong \angle 3, \angle 2 \cong \angle 4$
- 2) <1 and <2 are supplementary
- 3) m<1 + m<2 = 180
- 4) m<1 = m<3
- 5) m<3 + m<2 = 180
- 6) <3 and <2 are supplementary
- 7) $\overline{AD}||\overline{BC}|$

- 1) Given
- 2) Consecutive Int. Angles thm.
- 3) Def. of supplementary angles
- 4) Def. of Congruent Angles (from given)
- 5) Substitution Prop. Of =
- 6) Def. of supplementary angles
- 7) Consecutive Int. Angles thm. Converse